Abstract

Calculates and prints successive lines of Pascal’s triangle.

\[
\begin{array}{cccccc}
 (f + s)^5 & 1f^4s^0 & 4f^3s^1 & 6f^2s^2 & 4f^1s^3 & 1f^0s^4 \\
 (f + s)^5 & 1f^5s^0 & 5f^4s^1 & 10f^3s^2 & 10f^2s^3 & 5f^1s^4 \\
 (f + s)^5 & 1f^5s^0 & 5f^4s^1 & 10f^3s^2 & 10f^2s^3 & 5f^1s^4 \\
\end{array}
\]

and also will typeset the following proof

\[
7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
\]

\[
\begin{align*}
\binom{n}{r} &= \frac{n!}{(n-r)! \cdot r!} = \frac{n!}{(n-r)! \cdot (n-(n-r))!} = \binom{n}{n-r} \\
\binom{n-1}{r-1} + \binom{n-1}{r} &= \frac{(n-1)!}{(r-1)! \cdot [(n-1) - (r-1)]!} + \frac{1}{r! \cdot [(n-1) - r]!} \\
&= \frac{(n-1)!}{(r-1)! \cdot (n-r)!} \cdot \frac{1}{r! \cdot [(n-1) - r]!} \\
&= \frac{(n-1)! \cdot r + (n-r)}{r!(n-r)!} \\
&= \frac{n!}{r! \cdot (n-r)!} = \binom{n}{r}
\end{align*}
\]

\
\begin{align*}
\frac{r}{r! \cdot (n-r)!} &= \frac{1}{(r-1)! \cdot (n-r)!} = \frac{1}{(r+1)! \cdot (n+1)! \cdot (n+1)-(r+1)!} \\
&= \frac{(n+1)!}{r! \cdot (n-r)!} = \frac{n!}{r! \cdot (n-r)!} = (n+1) \cdot \binom{n}{r}
\end{align*}

1 Introduction

A very simple package with simple usage. Putting ‘binomexp’ (which is also typed exactly the same way than {\{binomexp\}} inside of the argumentative input of the \usepackage commands enables the user to do two extra things.

*This document corresponds to binomexp v1.0, dated 2007/01/07.
• print any successive rows of Pascal’s triangle which will fit on the page up
until the power as 31, at which point \LaTeX runs out of brain power.

• Use a piece of code which Morten Høgholm wrote which allows the cells
inside of an array or a tabular to be repeated in a similar way than those
may be repeated inside of the initial description of said array or tabular.

2 Usage

Binomexp ought to load ifthen and calc by itself. If you have already loaded these
packages using \usepackage{calc,ifthen} unload these therefore. You must
then use the command as \makeatletter so to get the command names with the
symbol as @ inside of those to function.

\begin{verbatim}
\binomexp@putpascal \{\langle number as lower power\rangle\} \{\langle number as higher power\rangle\} \{\langle symbol as first variable\rangle\} \{\langle symbol as second variable\rangle\} \{\langle symbol again as first variable\rangle\} \{\langle symbol again as second variable\rangle\}
\binomexp@putpascal \{7\} \{9\} \{f\} \{x\} \{f\} \{x\}
\binomexp@putpascal\{\langle number as row variable\rangle\} \{\langle number as column variable\rangle\}
\end{verbatim}

will typset the rows as 7, 8, and 9 of Pascal’s triangle. The first column will have \(f + x\)^power. The reason why
you have to input the symbol again is because the user might like to use a \texttt{\cdot}
or whatever in the other columns except the first column. And that’s it really.

\begin{verbatim}
\binomexp@proof \{\langle number as row variable\rangle\} \{\langle number as column variable\rangle\}
\end{verbatim}

will typset the mathematical proof of Pascal’s triangle, which is based upon the ob-
servation that the co-efficient is equal with the number of possible combinations
of the column variable out of the row variable.

3 How I wrote it.

\begin{verbatim}
1 \RequirePackage{calc,ifthen}
Morten Høgholm wrote the following code.
2 \newcommand\binomexp@replicate[2]{%\
3 \ifnum#1>\z@ \expandafter\@firstofone
4 \else
5 \expandafter\@gobble
6 \fi
7 \{#2\expandafter\binomexp@replicate\expandafter{\number\numexpr#1-1\relax}{#2}\}%
8 }\
\end{verbatim}

Morten’s code allows the following.
\begin{verbatim}
begin{document}
makeatletter
begin{tabular}{|*{6}{|c|}|}
something1 \binomexp@replicate{4}{& something2}Blah\&stuff\\
something1 \binomexp@replicate{4}{& something2}Blah\&stuff\\
end{tabular}
end{document}
\end{verbatim}
You can invoke Morten’s code either by loading the \usepackage{binomexp} within the preamble, and then by putting \makeatletter, or by including the following code somewhere (perhaps a preamble).

\makeatletter
\newcommand\binomexp@replicate[2]{%
 \ifnum#1>\z@ \expandafter\@firstofone \else \expandafter\@gobble \fi
 {#2}\expandafter\binomexp@replicate\expandafter{\number\numexpr#1-1\relax}{#2}
} \makeatother

\binomexp@call the \newcommand as \binomexp@call makes things nice and pretty within a cell
\binomexp@up the \newcommand as \binomexp@up is by the power of the series which ascends
\binomexp@down the \newcommand as \binomexp@down is by the power of the series which descends
\binomexp@columns an array of so many columns
\binomexp@power \((f + s)^{\text{power}} \)
\binomexp@pascalstart the next 3 counters are used within the \binomexp@putpascal command
\binomexp@pascalstop
\binomexp@emptytimes
\binomexp@variable1 the following 3 counters are used within the process of calculation as \binomexp@printpascal
\binomexp@variable2
\binomexp@answervar
\binomexp@sub to calculate the coefficients of the Pascal’s triangle
\binomexp@printpascal to calculate the coefficients of the Pascal’s triangle
TRANSFER PART set counter as binomexp@sub to 1
42 \setcounter{binomexp@sub}{2}
create a loop which shall get the binomexp@y values and put those into the appropriate binomexp@x values. Also export the y values by this same corresponding power into a length called binomexp@morten\roman{power}\export\roman{binomexp@sub}
43 \whiledo{\number\value{binomexp@power}+1>\value{binomexp@sub}}{
44 \setcounter{binomexp@answervar}{\number\numexpr\csname binomexp@y\roman{binomexp@sub}\endcsname\relax}
45 \expandafter\edef\csname binomexp@x\roman{binomexp@sub}\endcsname\relax{\number\value{binomexp@answervar}}
46 \addtocounter{binomexp@sub}{1}
47 }
Here is how I exported the values to the table.
48 \expandafter\edef\csname binomexp@morten\roman{binomexp@power}\export\roman{binomexp@sub}\endcsname\relax{\number\value{binomexp@answervar}}
51 \addtocounter{binomexp@sub}{1}
52 }
53 \setcounter{binomexp@variable1}{\numexpr\number\value{binomexp@power}+1\relax}
54 \expandafter\edef\csname binomexp@morten\roman{binomexp@power}\export\roman{binomexp@variable1}\endcsname\relax{\number\value{binomexp@answervar}}
56 \expandafter\edef\csname binomexp@morten\roman{binomexp@power}\export\roman{binomexp@variable1}\endcsname\relax{\number\value{binomexp@answervar}}
To see what is happening add the following lines at this place.
\begin{verbatim}
power is \number\value{binomexp@power}\par
\setcounter{binomexp@variable2}{1}
\whiledo{\value{binomexp@variable2}<\numexpr\number{\value{binomexp@power}}+2\relax}{
binomexp@morten\roman{binomexp@power}\export\roman{binomexp@variable2}\is\csname binomexp@morten\roman{binomexp@power}\export\roman{binomexp@variable2}\endcsname\relax\par\addtocounter{binomexp@variable2}{1}}
\end{verbatim}

\binomexp@putpascal set binomexp@xi as 1
\begin{verbatim}
binomexp@xi never alters
\end{verbatim}
set an eventuality for binomexp@xi by the power as zero

we’ll need to start power as zero by the way `binomexp@printpascal` is transfigured.

we’ll need to start power as zero by the way `binomexp@printpascal` is transfigured.

wrap the chipolatas in stringy bacon.

now calculate all the co-efficients.

work out the number of columns

now the table

repeat the number of rows so many times

prime the binomexp@up gun and cock.

prime the binomexp@down gun and cock.

add one more row for luck

This command prints a mathematical proof of the Pascals’s triangle based upon obervation.

\binomexp@proof
\begin{eqnarray*}
\binom{#1}{#2} &=& \frac{#1!}{(#1-#2)!(#1-(#1-#2))!} = \binom{#1}{#1-#2} \\
\binom{#1}{#2} + \binom{#1}{#2} &=& \frac{(#1 - 1)!}{(#2 - 1)!(#1 - #2)!} + \\
&=& (#1 - 1)\cdot\left(\frac{1}{(#2 - 1)!(#1 - #2)!} + \frac{1}{#2!(#1 - #2)!}\right) \\
&=& \frac{#1!}{#2!(#1 - #2)!} = \binom{#1}{#2} \\
\end{eqnarray*}

\frac{#2}{#2!(#1-#2)!} = \frac{1}{(#2-1)!(#1-#2)!}
\hspace*{5em} \text{because} \hspace*{5em} \\
\frac{6}{6!(#1-#2)!} = \frac{1}{5!(#1-#2)!}
\begin{eqnarray*}
(#2 + 1)\cdot \binom{#1 + 1}{#2 + 1} &=& (#2 + 1)\cdot \frac{(#1 + 1)!}{((#2 + 1)!\cdot ((#1 + 1) - (#2 + 1))!} \\
&=& (#2 + 1)\cdot \frac{(#1 + 1)!}{(#2 + 1)!\cdot (#1 - #2)!} \\
&=& (#1 + 1)\cdot \frac{#1!}{#2!(#1 - #2)!} = (#1 + 1)\cdot \binom{#1}{#2} \\
\end{eqnarray*}

\textbf{Index}

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

\begin{center}
\textbf{Symbols}
\end{center}

\begin{itemize}
\item \texttt{\@firstofone} \hspace{1cm} 3
\item \texttt{\@gobble} \hspace{1cm} 5
\item \texttt{\@} \hspace{1cm} 86, 106, 108, 109, 113, 117, 118, 120
\item \texttt{\textbackslash \vspace*{5em}} \hspace{1cm} 103, 114
\item \texttt{\textbackslash A}
\item \texttt{\textbackslash addtocounter} 12, 15, 26, 40, 55, 72, 87
\item \texttt{\textbackslash B}
\item \texttt{\textbackslash begin} 45, 76, 104, 115
\item \texttt{\textbackslash binomexp\textasciitilde answe\textasciitilde} 21
\item \texttt{\textbackslash binomexp\textasciitilde cal\textasciitilde} 9, 81, 83, 91, 93
\item \texttt{\textbackslash binomexp\textasciitilde c\textasciitilde ol\textasciitilde m\textasciitilde n\textasciitilde s} 16
\item \texttt{\textbackslash binomexp\textasciitilde d\textasciitilde own} 13, 86, 96
\item \texttt{\textbackslash binomexp\textasciitilde empty\textasciitilde times} 18
\item \texttt{\textbackslash binomexp\textasciitilde p\textasciitildeascal\textasciitilde star\textasciitilde} 18
\item \texttt{\textbackslash binomexp\textasciitilde p\textasciitildeascal\textasciitilde stop} 18
\item \texttt{\textbackslash binomexp\textasciitilde po\textasciitilde wer} 17
\item \texttt{\textbackslash binomexp\textasciitilde printpascal} 25, 72
\item \texttt{\textbackslash binomexp\textasciitilde proof} 2, 99
\item \texttt{\textbackslash binomexp\textasciitilde up\textasciitilde p\textasciitildeascal\textasciitilde star\textasciitilde} 1, 64
\item \texttt{\textbackslash binomexp\textasciitilde replicate} 2, 7, 82, 92
\item \texttt{\textbackslash binomexp\textasciitilde sub} 24
\item \texttt{\textbackslash binomexp\textasciitilde up\textasciitilde p\textasciitildeascal\textasciitilde up\textasciitilde} 10, 86, 96
\item \texttt{\textbackslash binomexp\textasciitilde variable1} 21
\item \texttt{\textbackslash binomexp\textasciitilde variable2} 21
\item \texttt{\textbackslash c\textbackslash dot\textasciitilde} 100–102, 105–109, 112, 114, 116–119
\item \texttt{\textbackslash choose} 101, 102, 104, 110, 116, 120
\item \texttt{\textbackslash csname} 27, 35, 36, 38, 48, 50, 52, 59, 61, 65, 66, 83, 93
\item \texttt{\textbackslash def} 27, 38, 50, 52, 59, 61, 65, 66
\item \texttt{\textbackslash else} 4
\item \texttt{\textbackslash end} 42, 97, 111, 121
\item \texttt{\textbackslash endcsname} 28, 36–38, 49, 50, 53, 60, 62, 65, 66, 85, 95
\item \texttt{\textbackslash expandafter} 3, 5, 7, 27, 38, 50, 52, 59, 61, 65, 66
\item \texttt{\textbackslash fi} 6
\item \texttt{\textbackslash frac} 101, 102, 105–110, 112, 114, 117–119
\item \texttt{\textbackslash hspace} 100, 113
\item \texttt{\textbackslash ifnum} 3
\end{itemize}
<table>
<thead>
<tr>
<th>Command</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>L \left</td>
<td>107</td>
</tr>
<tr>
<td>M \mbox</td>
<td>9, 113</td>
</tr>
<tr>
<td>N \newcommand</td>
<td>2, 9, 11, 14, 25, 64, 99</td>
</tr>
<tr>
<td>\newcommand</td>
<td>10, 13, 16–24</td>
</tr>
<tr>
<td>\newcommand</td>
<td>7, 11, 14, 30, 31, 33, 35, 36, 39, 47, 48, 51, 54, 58, 75, 78, 81, 82, 91, 92</td>
</tr>
<tr>
<td>\numexpr</td>
<td>7, 30, 31, 33, 36, 47, 48, 58, 75, 85, 88, 89, 90</td>
</tr>
<tr>
<td>\setcounter</td>
<td>29, 30, 33–35, 46, 48, 57, 67–70, 74, 79, 80, 89, 90</td>
</tr>
<tr>
<td>\par</td>
<td>64</td>
</tr>
<tr>
<td>\protect</td>
<td>25</td>
</tr>
<tr>
<td>\relax</td>
<td>7, 30, 31, 33, 36, 37, 39, 47, 49, 58, 75, 78, 81, 82, 84, 85, 91, 92, 94, 95</td>
</tr>
<tr>
<td>\requirepackage</td>
<td>1</td>
</tr>
<tr>
<td>\right</td>
<td>108</td>
</tr>
<tr>
<td>\roman</td>
<td>28, 36–38, 49, 50, 53, 60, 62</td>
</tr>
<tr>
<td>\requirepackage</td>
<td>84, 95</td>
</tr>
<tr>
<td>\zetap</td>
<td>3</td>
</tr>
<tr>
<td>\value</td>
<td>11, 14, 30–34, 39, 47, 51, 54, 58, 70, 71, 75–84, 85, 90–92, 94, 95</td>
</tr>
<tr>
<td>\whiledo</td>
<td>31, 47, 71, 77</td>
</tr>
<tr>
<td>\zetap</td>
<td>3</td>
</tr>
</tbody>
</table>