Abstract

This package, initially a collection of Michael A. Covington’s private macros, provides numerous minor \LaTeX{} enhancements for linguistics, including multiple diacritics on the same letter, interlinear glosses (word-by-word translations), Discourse Representation Structures, and example numbering.

Contents

1 Introduction 2
2 Stacked diacritics 2
3 Numbered examples 3
 3.1 Example numbers \hfill 3
 3.2 The example environment \hfill 4
 3.3 The examples environment \hfill 5
 3.4 The subexamples environment \hfill 5
 3.5 Referring to examples \hfill 6
4 Glossing sentences word-by-word 7
5 Phrase structure rules 9
6 Feature structures 9
7 Discourse Representation Structures 10
8 Exercises 11
9 Reference Lists 12
10 Displayed sentences 13
11 Big curly brackets (disjunctions) 13
12 Release history 13

*Current maintainer. Please report issues via https://github.com/jspitz/covington
1 Introduction

This is the documentation for version 1.7 of covington (September 8, 2018), which is a \LaTeX{} package providing macros for typing some special notations common in linguistics.\footnote{The package has a long history. It started off as a collection of private macros back in the \TeX{} 2.09 days and was initially released as covingtn.sty (following the old 8.3 FAT file name limit). In \emTeX{} under \msdos{}, the file was distributed as covingto.sty. Eventually, it has been renamed to covington and adapted to \LaTeX{} 2ε.}

To use covington with \LaTeX{} 2ε, load the package as usual by adding the command \texttt{\usepackage{covington}} to your document preamble. The package has the following options:

\textbf{force}: Force the redefinition of environments that have already been defined by other packages or the class.

This applies to the \texttt{example}, \texttt{examples}, \texttt{subexamples} and \texttt{exercise} environments, which are by default not touched if they are already defined before covington is loaded. See sec. 3.2, 3.3, 3.4 and 8 for details.

\textbf{keeplayout}: Do not tweak the layout.

Covington sets \texttt{\raggedbottom} and redefines the value of the \texttt{\textfloatsep} length. This just follows the preferences of the original package author and is not necessary for the package’s functionality. Yet for backwards compatibility reasons, we cannot change this. Thus, we provide the option described here to opt out this presetting.

In what follows we presume that you know how to use \LaTeX{} and have access to \LaTeX{} manuals. Note that covington does not provide any special fonts or character sets. However, it can be used in combination with other style sheets that do.

If you are using covington and \texttt{uga.sty} (UGa thesis style) together, you should load \texttt{uga} before covington.

2 Stacked diacritics

\LaTeX{} provides a generous range of diacritics that can be placed on or below any letter, such as:

\begin{itemize}
\item \texttt{\acute{x}} \texttt{\breve{x}} \texttt{\grave{x}} \texttt{\ddot{x}} \texttt{\check{x}} \texttt{\tilde{x}} \texttt{\bar{x}}
\end{itemize}

which are typed, respectively, as:

\begin{verbatim}
\acute{x} \breve{x} \grave{x} \ddot{x} \check{x} \tilde{x} \bar{x}
\end{verbatim}

Out of the box, however, \LaTeX{} doesn’t give you a convenient way to put two diacritical marks on the same letter. To fill this gap, covington provides the following macros:
\twodias{<upper diac.>}{<lower diac.>}{<char>}
to combine any two diacritics, e.g., \twodias{\~}{\=}{a} = ˜¯a
\acm{...} for acute over macron, e.g., \acm{a} = '¯a
\grm{...} for grave over macron, e.g., \grm{a} = `¯a
\cim{...} for circumflex over macron, e.g., \cim{a} = ˆ¯a

The first of these is the general case and the latter three are special cases that are often used in Greek transcription. Now you can type Koïnê with both accents in place.

The vertical distance between the two diacritics can be adjusted via the macro \SetDiaOffset{<length>} which lets you increase or decrease the vertical space that is currently in effect. If you'd use \SetDiaOffset{-0.25ex}, the above examples would come out as

\twodias{<upper diac.>}{<lower diac.>}{<char>}
to combine any two diacritics, e.g., \twodias{\~}{\=}{a} = ˜¯a
\acm{...} for acute over macron, e.g., \acm{a} = '¯a
\grm{...} for grave over macron, e.g., \grm{a} = `¯a
\cim{...} for circumflex over macron, e.g., \cim{a} = ˆ¯a

with a slightly better matching distance for the font used here.

Note that not all accent macros work in the tabbing environment. Use the Tabbing package or refer to [1] for alternative solutions.

3 Numbered examples

Linguistic papers often include numbered examples. With covington, generating those is straightforward. In this section, we describe how you can typeset a self-stepping example number (see section 3.1), a single numbered example (sec. 3.2), a consecutive range of numbered examples (sec. 3.3), and alpha-numerically labeled sub-examples (sec. 3.4). All numbered examples can be referred to in the text via \label and \ref as usual (see sec. 3.5 for details).

3.1 Example numbers

The macro \exampleno generates a new example number, stepped by 1. It can be used anywhere you want the number to appear. For example, to display a sentence with a number at the extreme right, do this:

\begin{flushleft}
This is a sentence. \hfill \exampleno
\end{flushleft}

Here's what you get:

\footnote{Alternatively, there’s also the old syntax \twoacc{<upper diac.>}{<char with lower diacr.>}, e.g. \twoacc{\~}{\=}{a} to the same effect, which is however discouraged due to its rather odd form.}
This is a sentence.

The example counter is actually the same as \LaTeX’s equation counter, so that if you use equations and numbered examples in the same paper, you get a single continuous series of numbers. If you want to output the number without stepping it, use \texttt{\theequation}.

Normally, however, you do not need to manually place \texttt{\example} yourselves, as in the example above. For the common case where example numbers in parentheses are placed left to the example, covington provides more convenient solutions. These are described in turn.

3.2 The example environment

The \texttt{example} environment (alias \texttt{covexample}) displays a single example with a generated example number to the left of it. If you type

\begin{verbatim}
\begin{example}
This is a sentence.
\end{example}
\end{verbatim}

or

\begin{verbatim}
\begin{covexample}
This is a sentence.
\end{covexample}
\end{verbatim}

you get:

(2) This is a sentence.

The example can be of any length; it can consist of many lines (separated by \texttt{\textbackslash \textbackslash}), or even whole paragraphs.

If you need more space between the example number and the text, you can increase it by means of the length \texttt{\examplenumbersep} (which is preset to 8pt). Doing \texttt{\setlength{\examplenumbersep}{1em}}, for instance, will increase the space by 1em (negative values will decrease the space accordingly).

Note that, as of version 1.1, covington checks if there is already an \texttt{example} environment defined (e.g., by the class). If so, covington does not define its own one. However, there is always the alias environment \texttt{covexample} which can be used in order to produce covington’s example. If you use the package option \texttt{force}, covington will override existing \texttt{example} environments. In any case, the package will issue a warning if \texttt{example} is already defined (this is the case, for instance, if you use covington with the \texttt{beamer} class).

One way to number sub-examples is to use \texttt{itemize} or \texttt{enumerate} within an example, like this:

\begin{verbatim}
\begin{example}
\begin{itemize}
 \item[(a)] This is the first sentence.
 \item[(b)] This is the second sentence.
\end{itemize}
\end{example}
\end{verbatim}
This prints as:

(3) (a) This is the first sentence.
 (b) This is the second sentence.

However, the examples and subexamples environments, described in turn, are usually more convenient for this task.

3.3 The examples environment

To display a series of examples together, each with its own example number, use examples (or covexamples) instead of example or covexample. The only difference is that there can be more than one example, and each of them has to be introduced by \item, like this:

\begin{examples}
\item This is the first sentence.
\item This is the second sentence.
\end{examples}

or, respectively:

\begin{covexamples}
\item This is the first sentence.
\item This is the second sentence.
\end{covexamples}

This prints as:

(4) This is the first sentence.
(5) This is the second sentence.

As for example, covington checks if there is already an examples environment defined, and if this is the case, covington does not define its own one. The alias environment covexamples is always available as a fallback. If you use the package option force, covington will override existing examples environments. The package will issue a warning if examples is already defined (this is the case, for instance, if you use covington with the beamer class), telling you how it has dealt with the situation.

3.4 The subexamples environment

Sometimes a set of (paradigmatic) sub-examples gets only one main example number with alphabetic sub-numbering, as in (6 a). To achieve this most conveniently, covington provides the subexamples (or covsubexamples) environment. The difference to examples/covexamples is the numbering:

\begin{subexamples}
\item This is the first sentence.
\item This is the second sentence.
\end{subexamples}
or, respectively:

\begin{covsubexamples}
\item This is the first sentence.
\item This is the second sentence.
\end{covsubexamples}

prints as:

(6) (a) This is the first sentence.
(b) This is the second sentence.

Again, covington checks if there is already an \texttt{subexamples} environment defined, and if this is the case, covington does not define its own one. The alias environment \texttt{covsubexamples} is always available as a fallback. If you use the package option \texttt{force}, covington will override existing \texttt{subexamples} environments. The package will issue a warning if \texttt{subexamples} is already defined.

If you do not want the subexample letter in parentheses, you can redefine (via \texttt{\renewcommand}) the macro \texttt{covsubexnumber} which has the following default definition:

\begin{verbatim}
\newcommand*{\covsubexnumber}[1]{(#1)}
\end{verbatim}

The distance between example number and subnumber (letter) can be changed via the length \texttt{\examplenumbersep} (which is preset to 8pt). The distance between example subnumber and text can be changed via the length \texttt{\subexamplenumbersep} (preset to 8pt as well). In both cases, a positive value will increase, a negative value will decrease the respective distance. Doing

\begin{verbatim}
\setlength{\examplenumbersep}{-0.5em}
\setlength{\subexamplenumbersep}{0.5em}
\end{verbatim}

for instance, will come out like this:

(7) (a) This is the first sentence.
(b) This is the second sentence.

\subsection{Referring to examples}

References to examples and sub-examples can be made the usual way via the \texttt{\ref} command (which refers to a \texttt{\label} that is placed in the respective example paragraph). The references do not have parentheses by default, i.e., a reference to the example in section 3.2 would be printed as 2, a reference to the sub-example in section 3.4 as 6 a. For convenience, though, covington provides a command \texttt{\pxref} that also prints the parentheses, as in (2) and (6 a).
4 Glossing sentences word-by-word

To gloss a sentence is to annotate it word-by-word. Most commonly, a sentence in a foreign language is followed by a word-for-word translation (with the words lined up vertically) and then a smooth translation (not lined up), like this:\footnote{The macros for handling glosses are adapted with permission from gloss.tex, by Marcel R. van der Goot.}

\textit{Dit is een Nederlands voorbeeld.}
This is a Dutch example.

‘This is an example in Dutch.’

That particular example would be typed as:

\begin{verbatim}
gll Dit is een Nederlands voorbeeld.
 This is a Dutch example.
glt ‘This is an example in Dutch.’
glend
\end{verbatim}

Notice that the words do not have to be typed lining up; instead, \TeX{} counts them. If the words in the two languages do not correspond one-to-one, you can use curly brackets to group words. For example, to print

\textit{Dit is een voorbeeldje in het Nederlands.}
This is a little example in Dutch.

‘This is a little example in Dutch.’

you would type:

\begin{verbatim}
gll Dit is een voorbeeldje in het Nederlands.
 This is a {little example} in {} Dutch.
glt ‘This is a little example in Dutch.’
glend
\end{verbatim}

Note that covington locally activates the end of line in glosses in order to identify the different lines of the gloss (via category code change). This does not work inside macros (e.g., if the gloss is in a footnote). To work around this, a special version of the \texttt{glt} macro is provided that does without the character activation: \texttt{xglt}. This can also be used in macro arguments; however, the end of each gloss line needs to be explicitly specified by the \texttt{xgle} macro in this case. If you want to put the above gloss in a footnote, thus, you would type:

\begin{verbatim}
xgll Dit is een voorbeeldje in het Nederlands.xgle
 This is a {little example} in {} Dutch.xgle
xglt ‘This is a little example in Dutch.’
xglen
\end{verbatim}

Sometimes, an additional fourth line is needed (for instance to gloss cited forms, morphology, or an additional translation). To support this as well, covington provides
\texttt{\textglll} and \texttt{\textxglll}, each allowing for, and actually requiring, an additional line (see below for an example).

All together, covington provides eight macros for dealing with glosses:

- \texttt{\textgll} introduces two lines of words vertically aligned, and activates an environment very similar to \texttt{flushleft}. The two lines are separated by a normal line break (carriage return).
- \texttt{\textglll} is like \texttt{\textgll} except that it introduces three lines of lined-up words.
- \texttt{\textxgll} is similar to \texttt{\textgll} except that it does not make the line ending active. It thus works inside macros such as footnotes but requires explicit gloss line termination via \texttt{\textxgle}.
- \texttt{\textxglll} is similar to \texttt{\textglll} except that it does not make the line ending active. It thus works inside macros such as footnotes but requires explicit gloss line termination via \texttt{\textxgle}.
- \texttt{\textxgle} is a gloss line ending marker to be used with \texttt{\textxgll} and \texttt{\textxglll}.
- \texttt{\textglt} ends the set of lined-up lines and introduces a line (or more) of translation.
- \texttt{\textgln} is like \texttt{\textglt} but does not start a new line (useful when no translation follows but you want to put a number on the right).
- \texttt{\textglend} ends the special \texttt{flushleft}-like environment.

Here are several examples. First, a sentence with three lines aligned, instead of just two:

\begin{quote}
\textit{Hoc est aliud exemplum.}
\textsc{n.sg.nom} \textsc{3sg} \textsc{n.sg.nom} \textsc{n.sg.nom} This is another example.
\end{quote}

This is typed as:

\begin{verbatim}
\texttt{\textglll Hoc est aliud exemplum.}
\texttt{\texttextsc{n.sg.nom} \texttextsc{3sg} \texttextsc{n.sg.nom} \texttextsc{n.sg.nom} This is another example.}
\texttt{\textglt \textquoteright This is another example.\textquoteright}
\texttt{\textglend}
\end{verbatim}

Next, an example with a gloss but no translation, with an example number at the right:

\begin{quote}
\textit{Hoc habet numerum.}
\textsc{n.sg.nom} has \textsc{n.sg.nom} number
\end{quote}

That one was typed as:

\begin{verbatim}
\texttt{\textgll Hoc habet numerum.}
\texttt{\texttextsc{n.sg.nom} \texttextsc{n.sg.nom}} This has number (8)
\texttt{\textxgll}
\end{verbatim}
Finally we’ll put a glossed sentence inside the example environment, which is a very common way of using it:

\begin{example}
Hoc habet numerum praepositum.
This has number preposed
‘This one has a number in front of it.’
\end{example}

This last example was, of course, typed as:

\begin{example}
Hoc habet numerum praepositum.
This has number preposed
‘This one has a number in front of it.’
\end{example}

Notice that every glossed sentence begins with either \texttt{\gll}, \texttt{\xgll}, \texttt{\glll} or \texttt{\xglll}, then contains either \texttt{\glt} or \texttt{\gln}, and ends with \texttt{\glend}. Layout is critical in the part preceding \texttt{\glt} or \texttt{\gln}, and fairly free afterward.

5 Phrase structure rules

To print phrase structure rules such as $S \rightarrow NP \ VP$ you can use covington’s macro \texttt{\psr{<constituent>}{<sub-constituents>}} (for the given example, \texttt{\psr{S}{NP~VP}}).

6 Feature structures

To print a feature structure such as

\begin{verbatim}
case : nom
person : P
\end{verbatim}

you can type:

\begin{verbatim}
\fs{case:nom \ person:P}
\end{verbatim}

The feature structure can appear anywhere — in continuous text, in a displayed environment such as \texttt{\flushleft}, or inside a phrase-structure rule, or even inside another feature structure.

To put a category label at the top of the feature structure, like this,

\begin{verbatim}
N
\end{verbatim}
here's what you type:
\lfs(N)\{case:nom \ person:P\}

And here is an example of a ps-rule made of labeled feature structures:

\[
S \quad \rightarrow \quad NP \quad VP
\begin{array}{c|c|c}
\text{tense} & \text{case} & \text{tense} \\
T & \text{nom} & T \\
N & \text{number} & N \\
\end{array}
\]

which was obviously coded as:

\[
\text{\texttt{\psr{\lfs(S)\{tense:T\}}}}
\begin{array}{c}
\{\lfs(NP)\{case:nom \ number:N\} \\
\lfs(VP)\{tense:T \ number:N\} \}
\end{array}
\]

7 Discourse Representation Structures

Several macros in covington facilitate display of discourse Representation Structures (\dsses) in the box notation introduced by Hans Kamp. The simplest one is \texttt{\drss}, which takes two arguments: a list of discourse variables joined by \texttt{-}, and a list of \dss conditions separated by \texttt{\}. Nesting is permitted. Note that the \drss macro itself does not give you a displayed environment; you must use \texttt{flushleft} or the like to display the \dss. Here are some examples:

\[
\begin{array}{c}
\begin{flushleft}
\drss{X}{donkey(X)\green(X)}
\end{flushleft}
\end{array}
\]

\[
\begin{array}{c}
\begin{flushleft}
\drss{X}{named(X, 'Pedro') \ donkey(Y)\owns(X,Y)\Rightarrow feeds(X,Y)}
\end{flushleft}
\end{array}
\]

To display a sentence above the \dss, use \texttt{\sdrss}, as in:

\[
\begin{array}{c}
\begin{flushleft}
\sdrss{A donkey is green.}{X}{donkey(X)\green(X)}
\end{flushleft}
\end{array}
\]

which prints as:

\[
\text{one.taboldstyle}\text{zero.taboldstyle}
\]
A donkey is green.

\[\begin{array}{c}
 X \\
 \text{donkey}(X) \\
 \text{green}(X)
 \end{array} \]

Some DRS connectives are also provided (normally for forming DRSes that are to be nested within other DRSes). The macro \texttt{\negdrs} forms a DRS preceded by a negation symbol:

\[\neg \begin{array}{c}
 X \\
 \text{donkey}(X) \\
 \text{green}(X)
 \end{array} \]

Finally, \texttt{\ifdrs} forms a pair of DRSes joined by a big arrow, like this:

\[\begin{array}{c}
 \texttt{\ifdrs} \\
 \begin{array}{c}
 X \\
 \text{donkey}(X) \\
 \text{hungry}(X)
 \end{array} \\
 \{\sim\} \\
 \{\text{feeds}(\text{Pedro},X)\}
 \end{array} \]

If you have an "if"-structure appearing among ordinary predicates inside a DRS, you may prefer to use \texttt{\alifdrs}, which is just like \texttt{\ifdrs} but shifted slightly to the left for better alignment.

8 Exercises

The \texttt{exercise} environment (alias \texttt{covexercise}) generates an exercise numbered according to chapter, section, and subsection (suitable for use in a large book; in this example, the subsection number is going to come out as 0). Here is an example:

Exercise 8.0.1 (Project) Prove that the above assertion is true.

This was coded as

\begin{verbatim}
\begin{exercise}[Project]
Prove that the above assertion is true.
\end{exercise}
\end{verbatim}
The argument (Project) in the example is optional.

Note that, as of version 1.1, covington checks if there is already an exercise environment defined (e.g., by the class). If so, covington does not define its own one. However, there is always the alias environment covexercise which can be used in order to produce covington’s exercise. If you use the package option force, covington will override existing exercise environments. In any case, the package will issue a warning if exercise is already defined.

9 Reference Lists

To type a simple lsa-style hanging-indented reference list, you can use the reflist environment. (Note: reflist is not integrated with BibTeX in any way.) For example,

\begin{reflist}

\end{reflist}

prints as:

By default, the references have a hanging indentation of 3 em. This can be globally changed by altering the length \texttt{\textbackslash reflistindent}. Doing \texttt{\setlength{\textbackslash reflistindent}{1.5em}}, for instance, will shorten the indentation by half. Likewise, the length \texttt{\textbackslash reflistitemsep} (6 pt by default) and \texttt{\textbackslash reflistparsep} (ca. 4 pt by default) can be adjusted to alter the vertical separation (\texttt{\itemsep} and \texttt{\parsep}, for that matter) of reference entries.

Notice that within the reference list, “French spacing” is in effect—that is, spaces after periods are no wider than normal spaces. Thus you do not have to do anything special to avoid excessive space after people’s initials.

\footnote{For BibTeX, there are several options: the lsa style, as used in the journal Language, can be obtained by means of the style files lsalike.bst (http://www.icsi.berkeley.edu/ftp/pub/speech/jurafsky/lsalike.bst) or language.bst (http://ron.artstein.org/resources/language.bst); the latter uses natbib. The so-called Unified Style Sheet for Linguistics, as proposed by the CELJ (Committee of Editors of Linguistics Journals), which slightly differs from the lsa style, is followed by the style file unified.bst (available at http://celj.org/downloads/unified.bst). A biblatex style file for the unified style is available at https://github.com/semprag/biblatex-sp-unified or on CTAN as part of the univie-ling bundle.}
10 Displayed sentences

The macro \texttt{\textbackslash sentence} displays an italicized sentence (it is a combination of \texttt{flushleft} and \texttt{itshape}). If you type

\begin{verbatim}
\texttt{sentence}\{This is a sentence.}\}
\end{verbatim}

you get:

\texttt{This is a sentence.}

11 Big curly brackets (disjunctions)

Last of all, the two-argument macro \texttt{\textbackslash either} expresses alternatives within a sentence or PS-rule:

the \texttt{\textbackslash either\{big\}\{large\}} dog = the \{ big \\
\hspace{1cm} large \} dog

\texttt{\textbackslash psr\{A\}\{B-\textbackslash either\{C\}\{D\}\}E} = A \rightarrow B \{ C \\
\hspace{1cm} D \} E

That’s all there is for now. Suggestions for improving covington are welcome, and bug reports are actively solicited (via \url{https://github.com/jspitz/covington}). Please note, however, that this is free software, and the authors make no commitment to do any further work on it.

12 Release history

1.7 (2018 September 8)

- Fix alignment in \texttt{subexamples}.
- Improve manual.

1.6 (2018 September 7)

- Introduce new environment \texttt{subexamples} (see sec. 3.4).
- Introduce new command \texttt{\textbackslash pxref} (see sec. 3.5).

1.5 (2018 August 24)

- Introduce new option \texttt{keeplayout} which allows to opt-out the layout presettings covington does (\texttt{\textbackslash raggedbottom}, \texttt{\textbackslash textfloatsep}).
1.4 (2017 May 23)

• Introduce a new macro \twodias that supersedes the rather odd \twoacc (which is kept for backwards compatibility). See sec. 2 for details.

• Introduce macro \SetDiaOffset for more convenient setting of vertical distance in stacked diacritics. See sec. 2 for details.

• \LaTeX 2.09 is no longer officially supported (it might continue to work, but is not tested).

1.3 (2017 April 5)

• Gloss variants \xgll and \xglll that work inside macros (such as footnotes) but require explicit gloss line end markers (\xgle). See sec. 4 for details.

• New lengths \reflistindent, \reflistparsep and \reflistitemsep to globally adjust the indentation or vertical space, respectively, of reflist items. See sec. 9 for details.

1.2 (2016 August 26)

• New length \examplenumbersep to adjust (increase) the horizontal space between example number and example text. See sec. 3.2 for details.

• Add some more info about bibliography generation.

1.1a (2016 July 7)

• Fix encoding problem in documentation and some typos. No change in functionality.

1.1 (2016 July 6)

• The package now uses \nfss font commands if available (fallback for \LaTeX 2.09 is still provided).

• Work around clash with classes/packages that define their own \example and \examples environments (most notably the \beamer class) as well as \execise environments. The covington package no longer blindly attempts to define these environments. By default, it does not define them if they are already defined (covington’s own environments, however, are still available via aliases). By means of a new package option, a redefinition can also be forced. See sec. 3.2 and 3.3 for details.

• New length \twoaccsep allows for the adjustment of the distance between stacked accents (see sec. 2).

• Update manual.
• New maintainer: J. Spitzmüller.
• License has been changed to LPPL (in agreement with M. Covington)
• Introduce version numbers. Arbitrarily, we start with 1.1.

2014 May 16
• Patches by Robin Fairbairns:
 – Setting of \textfloatsep uses \setlength rather than \renewcommand
 – Style file converted to un’x line endings

2001 March 27
• It is no longer necessary to type \it to get proper italic type in feature structures.
• Instructions have been rewritten with \LaTeX\ε users in mind.

Older versions
• Multiple accents on a single letter (e.g., ́ˆ) are supported.
• This package is now called covington (with the o) and is compatible with \LaTeX\ 2.09 and \nffs as well as \LaTeX\ 2.09.
• The vertical placement of labeled feature structures has been changed so that
 the category labels line up regardless of the size of the structures.

References