Register diagrams with field descriptions

Matthew Lovell
lovells@gmail.com
2018/11/10

Abstract

The register package is designed for typesetting the programmable elements in digital hardware, i.e., registers. Such registers typically have many fields and can be quite wide; they are thus a challenge to typeset in a consistent manner. This package attempts to address such issues. It is similar in some aspects to the bitfield package by Reuben Thomas and the bytefield package by Scott Pakin.

List of Registers

2.1 Diagnostic Control ... 2
2.2 Function Class .. 3
3.1 Example ... 4
3.2 Configuration ... 7
3.3 Color Example ... 9

1 Introduction

My group at work designed the memory and I/O controllers for servers and workstations. Historically, our chip documentation was done with FrameMaker or Microsoft Word. While these approaches have various disadvantages, one of the most egregious was register documentation.

The recent chips have 64-bit wide control-status registers (CSR) or, more simply, registers. Add the fact that many of these registers have a large number of single-bit fields, and you get a typesetting challenge. The typical solution was to describe such registers using a table, typing field names vertically if space became a problem. For a complicated register, these tables became quite complex and filled a large portion of a page.

When we decided to evaluate \LaTeX{} for documentation, we had three goals in mind with respect to registers:

1. Create a method of documenting registers which was consistent and easy to read, regardless of the number of fields within a register.
2. Automate the creation of lists of registers, both in order of appearance within the text and in memory address order.

3. Enable the automatic extraction of documented register reset values in order to verify register functionality in the chip itself.

The register package is my attempt at meeting all three goals. It was first put into use in April 1999; it may be not be pretty to all eyes, but it certainly has proven itself stable.

In order to promote \LaTeX{} within our group at the time, we also adopted \LaTeX{}-\TeX. The register package thus attempts to work well within that environment. All \LaTeX{}-\TeX-specific code, however, is controlled via package options.

1.1 Feedback

As register is my first \LaTeX{} package, I would welcome feedback regarding problems, new features, or more proper means of implementing existing features. For example, is there an “official” method for determining the current font’s maximum height and depth (see Section 6.4.1 for details)? I would also appreciate knowing whether anyone ever actually uses it.

It might also be worthwhile to investigate combining register with bitfield or bytefield.

2 Examples

Register 2.1 depicts a register with many single-bit fields. Registers such as this stress any scheme of typesetting, since the field names are so much longer than the space available for them within the diagram. By typesetting the field names at an angle, register manages to be consistent regardless of the number or width of fields. This rotation, however, means that documents which use register must be produced using PostScript.

```
| Reserved | cmp|arb | Reserved | mask|arb | Reserved | grp|en | cntl | grp|en | arb | grp|en | cbe | grp|en | arb | grp|en | fifo | dly | frame | level | cntl | cbe | arb | hlt | trg | on | always | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 00 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

Reset
Register 2.2 is an example of a register one could derive from the PCI specification. It is a miscellaneous register in a PCI card which controls device independent functions. Note the field descriptions which, in this case, are actually part of the float.

Register 2.2: Function Class (0x0008)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIST</td>
<td>(Read only) Always returns 0.</td>
</tr>
<tr>
<td>Header Type</td>
<td>(Read only) Always returns 0.</td>
</tr>
<tr>
<td>Latency Timer</td>
<td>PCI Latency Timer value (PCI 2.2 spec, Section 6.2.4).</td>
</tr>
<tr>
<td>Line Size</td>
<td>PCI Cache Line Size (PCI 2.2 spec, Section 6.2.4). Valid values are listed</td>
</tr>
<tr>
<td></td>
<td>below; any other value will be treated as indicating 64 byte cache lines.</td>
</tr>
<tr>
<td></td>
<td>0010_0000 128 bytes</td>
</tr>
<tr>
<td></td>
<td>0001_0000 64 bytes</td>
</tr>
<tr>
<td>Class Code</td>
<td>(Read only) PCI Class Code (PCI 2.2 spec, Section 6.2.1). Chip identifies</td>
</tr>
<tr>
<td></td>
<td>itself as a Host bridge.</td>
</tr>
<tr>
<td>Revision</td>
<td>(Read only) Chip revision number. Bits 4–7 provide the major revision number,</td>
</tr>
<tr>
<td></td>
<td>and bits 0–3 provide the minor revision number.</td>
</tr>
</tbody>
</table>

A final example is shown in Figure 1. This example shows that the register drawing macros don’t have to be used solely within a register float or environment. With Version 1.8, an unnumbered register environment is also available, using `register*`. Diagrams produced using the starred environment typeset just the register name, omitting the “Register” and number prefix.
3 User Interface

The user interface for register diagrams could be regarded as overly verbose. The main idea behind the parameters was to allow LaTeX and accompanying Perl scripts to decipher register fields and reset values. The simplest way to show the interface is via another example. Below is a 64-bit register.

![Figure 1: Address and BE phases for register access](image)

Register 3.1: Example (0x250)

<table>
<thead>
<tr>
<th>FIFO depth</th>
<th>Something</th>
<th>Status</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>1 1 0 0</td>
<td>uninitialized</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counter</th>
<th>Howdy</th>
<th>Control</th>
<th>Hardfail</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x244</td>
<td>1 1 0 1 0</td>
<td>1</td>
<td>uninitialized</td>
<td>1</td>
</tr>
</tbody>
</table>

It was created with the following commands:

```latex
\begin{register}{H}{Example}{0x250}% name=example
\label{example}%
\regfield{FIFO depth}{6}{58}{random}\
\regfield{Something}{4}{54}{1100}\
\regfield{Status}{21}{33}{uninitialized}\
\regfield{Enable}{1}{32}{1}\
\reglabel{Reset}\regnewline\
\regfield{Counter}{10}{22}{0x244}% READ_ONLY
\regfield{Howdy}{5}{17}{1_1010}\
\regfield{Control}{1}{16}{-}\
\regfield{Hardfail}{1}{15}{1}\
\regfield{Data}{15}{0}{uninitialized}\
\reglabel{Reset}\regnewline\
\end{register}
```
The register environment begins with \begin{register}. The three parameters to the environment are the float specification (h, H, t, b, or p); the register name; and the register’s offset in memory space. These parameters become the register caption as well as the entry in the list of registers, which is typeset using \listofregisters.

\begin{register}{⟨placement⟩}{⟨register name⟩}{⟨register offset⟩}

Each register field is then typeset using \regfield. The fields must be specified starting with the most-significant bit. The \regfield macro takes four parameters: field name, field length (in bits), starting bit number, and reset value. The reset value, unless you pass it as a single token (see example), will be spread apart to fill up the width of the field. The reset value, since it could be just a very long binary number, can be interrupted with underscores to improve readability.

\regfield{⟨name⟩}{⟨length⟩}{⟨start bit⟩}{⟨reset value⟩}

Note that the comments that are shown in the code are for the benefit of the helper scripts that accompany the register package. Those scripts are quite old and have not been updated to be tolerant of the optional color argument that is now supported. However, the general notion of using embedded comments to augment register or field information is still applicable, if one is using this package with the intent of generating HDL code from documentation.

As another example, consider Register 3.2 below, which has field descriptions as part of the float. This diagram was created with the following code:

\begin{verbatim}
\begin{register}{htbp}{Configuration}{0x2848}% name=CONFIG
 \label{Configuration}%
 \regfield{soft reset perf}{1}{63}{0}% STATUS
 \regfield{reserved}{30}{33}{0}%
 \regfield{Test mode}{1}{32}{0}%
 \reglabel{Reset}\regnewline%
 \regfield{reserved}{13}{19}{0}%
 \regfield{\parbox[b]{0pt}{Request Depth}}{7}{12}{1}%
\end{verbatim}

\footnote{Provided you’re a little-endian person!}
\begin{regdesc}
\begin{reglist}
\item [line_2x_enable] Setting this bit enables the chip to utilize a second connected data line.
\item [SBA_enable] Setting this bit activates the sideband-address port. The SBA port is only useable in a double-line configuration.
\item [DVI_disable] Setting this bit turns off DVI extraction for DMA requests.
\item [LPCE] Line Parity Check Enable.
\item [ill_cmd_enable] Illegal Command enable. This bit is new for TR3.
\item [line_2x_L] (Read only) Indicates whether this chip is connected to a second data line. When this bit is 0, a second line is available.
\item [Request_Depth] Controls number of outstanding DMA requests.
\item [Test_mode] Activates data line test mode.
\item [soft_reset_perf] Indicates that a soft reset has been performed. This bit is new for TR4.
\end{reglist}
\end{regdesc}

This example uses the \texttt{regdesc} environment, which can either be part of a register float or used standalone. The purpose of \texttt{regdesc} is really just to turn on centering and, when the LyX package option is specified, redefine the \texttt{lyxlist} environment. If one is using LyX, then register field descriptions can be entered using its List type. If one is typing \LaTeX{} directly, just use the \texttt{reglist} list definition.

The \texttt{regdesc} and \texttt{reglist} environments both take optional arguments. For \texttt{regdesc}, the optional argument specifies how wide the register description body should be. The default value is 90\% of \texttt{textwidth}. For \texttt{reglist}, the optional argument is the longest field name, which allows the list to be spaced appropriately (like examples given in The \TeX{} Companion).

Finally, if a register with no reset values is desired, one can use the \texttt{regfieldb} macro. It takes the same first three arguments as \texttt{regfield}. Figure 1 was produced using \texttt{regfieldb}.
Register 3.2: Configuration (0x2848)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft reset perf</td>
<td>0</td>
<td>Indicates that a soft reset has been performed. This bit is new for TR4.</td>
</tr>
<tr>
<td>reserved</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>requested</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>requested</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>requested</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>line_2x enable</td>
<td>0</td>
<td>Setting this bit enables this chip to utilize a second connected data line.</td>
</tr>
<tr>
<td>SBA enable</td>
<td>0</td>
<td>Setting this bit activates the sideband-address port. The SBA port is only useable in a double-line configuration.</td>
</tr>
<tr>
<td>DVI disable</td>
<td>0</td>
<td>Setting this bit turns off DVI extraction for DMA requests.</td>
</tr>
<tr>
<td>LPCE</td>
<td>0</td>
<td>Line Parity Check Enable.</td>
</tr>
<tr>
<td>ill_cmd enable</td>
<td>0</td>
<td>Illegal OCMD enable. This bit is new for TR3.</td>
</tr>
<tr>
<td>line_2x_L</td>
<td>0</td>
<td>(Read only) Indicates whether this chip is connected to a second data line. When this bit is 0, a second line is available.</td>
</tr>
<tr>
<td>Request Depth</td>
<td>0</td>
<td>Controls number of outstanding DMA requests.</td>
</tr>
<tr>
<td>Test mode</td>
<td>0</td>
<td>Activates data line test mode.</td>
</tr>
</tbody>
</table>

TR3

TR4
3.1 TR Flags

The previous example also shows the TR flags. These marginal notes can be used to denote features that are specific to a particular release of a chip. These macros were created since \LaTeX's \texttt{marginpar} is itself a float; as such it cannot be nested inside other floats. The \TR macros thus implement something very similar to the solution for Problem 14.28 in \textit{The \TeX\book}.

TR flags are turned on via the TRflags package option. If the option is not specified, then the TR macro still exists but is empty. The TR flags are placed inside an \texttt{fbox} if the TRboxed package option is specified.

For two-sided documents, the TR flags are placed in the outer margins. The placement decision is made by placing labels for each TR flag and then determining even/odd page numbering in a subsequent \LaTeX run.

3.2 Background Colors

With Version 1.7, this package also supports an optional \texttt{color} package option. If that option is present, then \texttt{xcolor} is loaded and the \texttt{regfield} and \texttt{regfieldb} macros support an optional first argument that is used as fill color for the boxes drawn by \texttt{framebox}. Internally, \texttt{colorbox} is used to provide this functionality.

Repeating our example from earlier, but with some fill colors specified:

\begin{verbatim}
\begin{register}{H}{Color Example}{0x250} name=example
 \label{colexample}\
 \regfield{FIFO depth}{6}{58}{\{random\}}\
 \regfield[green!30]{Something}{4}{54}{\{1100\}}\
 \regfield[gray!20]{Status}{21}{33}{\{uninitialized\}}\
 \regfield{Enable}{1}{32}{\{1\}}\
 \reglabel{Reset}\
 \regfield{Counter}{10}{22}{\{0x244\}} \% READ ONLY\
 \regfield[red!20]{Howdy}{5}{17}{\{1_1010\}}\
 \regfield[Control]{1}{16}{\{-\}}\
 \regfield[yellow!50]{Hardfail}{1}{15}{\{1\}}\
 \regfield[gray!20]{Data}{15}{0}{\{uninitialized\}}\
 \reglabel{Reset}\
\end{register}
\end{verbatim}

now yields the following:
4 Helper Scripts

A (now old) Perl module and a Perl script are included as part of the register package. The module augments the package by providing the ability to parse the register macro information into Perl. This information consists of the parameters used within the macros themselves, as well as the comments which follow. If you examine the last register example, you will notice that some fields specify `READ_ONLY` or `STATUS` in a comment. The “directives” can be used to indicate that particular fields are unaffected by writes or unaffected by reset, respectively.

The script, `reg_list.pl`, utilizes the Perl module to produce lists of registers in offset-order or to generate reset value and mask information for each register. The later data can be used in simulation to ensure that registers behave as documented.

Users are cautioned that the Perl script, since it is no longer in active use by the author, has not been modified to support the optional color argument for the `regfield` macro.

5 Version History

v0.1 (1999/03/29) First release

v0.2 (2000/01/29) Added regdesc environment, for use under LyX

v0.21 (2000/03/12) Fixed minute problem shown in regs with lots of 1-bit fields

v0.3 (2000/06/19) Added reglabelb macro, for setting label without a drop

v0.31 (2000/07/11) Modified names of lengths used within macros

v0.32 (2000/08/02) Modified regdesc env to use regdescsep for vertical separation

v0.4 (2001/08/11) Added macros for marginal Tape Release flags

v0.5 (2001/08/12) Added package options for handling LyX, hyperref, and TR flags
v0.6 (2001/08/19) Moved chapter redefinition into package; improved TR flags
v1.0 (2001/09/06) Created .dtx documentation; first public release
v1.01 (2003/01/17) Removed automatic label in register diagrams
v1.1 (2003/02/15) Changed length manipulation to work with parskip package
v1.2 (2003/03/31) Removed requirement to specify register offset
v1.3 (2003/11/24) Changed how center is handled within register environment
v1.4 (2004/08/16) Now provide a boolean set only in register context
v1.5 (2007/03/08) Corrected use of conditionals used in spreading register reset value
v1.6 (2011/01/11) Mainmatter correction suggested by Kjetil Oftedal
v1.6.1 (2018/05/19) Published with updated email address; no functional changes
v1.7 (2018/08/18) Added color option to package, suggested by Marco Stolba
v1.8 (2018/11/10) Added unnumbered register* environment, suggested and written by Stephan Bauroth
6 Implementation

6.1 Identification & Options

The \texttt{register} document class can only be used with \LaTeX\, so we make sure that an appropriate message is displayed when another \TeX\ format is used.

Announce the name and unconditionally load most of the required packages:

\begin{verbatim}
\ProvidesPackage{register} [2018/11/10 v1.8 Register macros with \hyperref/LyX support]
\RequirePackage{ifthen}[1997/11/02]
\RequirePackage{graphicx}[1997/06/09]
\RequirePackage{float}[2001/07/25]
\RequirePackage{calc}[1998/06/07]
\end{verbatim}

Declare the package options and some booleans. There are options indicating whether \texttt{register} is being used with \texttt{LyX} or \hyperref. The marginal TR flags can also be turned on or off with an option.

\begin{verbatim}
\DeclareOption{LyX}{\setboolean{RegisterLyX}{true}}
\DeclareOption{hyperref}{\setboolean{RegisterHyperref}{true}}
\DeclareOption{TRflags}{\setboolean{RegisterTRFlags}{true}}
\DeclareOption{TRboxed}{\setboolean{RegisterTRBoxed}{true}}
\DeclareOption{color}{\setboolean{RegisterColors}{true}}
\end{verbatim}

\begin{verbatim}
\DeclareOption*{% Emit a warning for other options
\PackageWarning{register}{Unknown option '\CurrentOption'}%}
\end{verbatim}

\begin{verbatim}
\newboolean{RegisterLyX}
\newboolean{RegisterHyperref}
\newboolean{RegisterTRFlags}
\newboolean{RegisterTRBoxed}
\newboolean{RegisterColors}
\end{verbatim}

\begin{verbatim}
\setboolean{RegisterLyX}{false}
\setboolean{RegisterHyperref}{false}
\setboolean{RegisterTRFlags}{false}
\setboolean{RegisterTRBoxed}{false}
\setboolean{RegisterColors}{false}
\end{verbatim}

\begin{verbatim}
\ProcessOptions % Process package options
\end{verbatim}

If the \texttt{color} package option has been specified, go ahead and load the \texttt{xcolor} package as well.

\begin{verbatim}
\ifthenelse{\boolean{RegisterColors}}{\RequirePackage{xcolor}[2007/01/21]}{}
\end{verbatim}

Next, provide a flag indicating when one is inside a register context. Some users may wish to define macros, for example, which make use of \texttt{marginpar}.
Those cannot be used inside of a floating register. So, this flag is provided to provide something to test against.

```latex
33 \newboolean{RegisterContext}
34 \setboolean{RegisterContext}{false}
```

6.2 Float Declaration & Lengths

Declare the new register float type and the lengths which the macros will use. The register diagrams tend to look best with the caption at the top of the float. If `\chapter` is defined in the current document class, then the register diagrams will count by chapter, otherwise they will count by section.

```latex
35 \floatstyle{plaintop} \@ifundefined{chapter}
36 {\newfloat{Regfloat}{tbp}{rdf}[section]}
37 {\newfloat{Regfloat}{tbp}{rdf}[chapter]}
38 {\floatname{Regfloat}{Register}}
```

6.3 Style Parameters

The `\regWidth` length controls how physically wide the register diagrams are, while `\regBitWidth` specifies how the maximum number of bits per line in the diagram. The default value for `\regWidth` is 95% of the width of the main text body.

```latex
39 \newlength{\regWidth}
40 \newlength{\regFieldLen}
41 \newlength{\regLabelAdjust}
42 \newlength{\regResetHeight}
43 \newlength{\regResetDepth}
44 \newlength{\regResetDrop}
45 \newlength{\regDescSkip}
46 \newlength{\regRsvdHeight}
47 \newlength{\regRsvdDrop}
48 \newlength{\regFboxSep}
49 \setlength{\regWidth}{0.95\textwidth}
50 \newcommand{\regBitWidth}{32}
51 \newcommand{\regResetName}{Reset}
52 \newcommand{\regBitSize}{\tiny}
53 \newcommand{\regBitFamily}{\sffamily}
54 \newcommand{\regResetSize}{\scriptsize}
55 \newcommand{\regLabelSize}{\footnotesize}
56 \newcommand{\regLabelFamily}{\rmfamily}
```
The lengths below control the vertical spacing between a register diagrams and the register field descriptions. This distance must change when the \regdesc is part of the \Regfloat or standalone.

\regdesc

Next is the \regdesc environment. If \texttt{\LaTeX}X is being used, the environment temporarily redefines the \texttt{lyxlist} environment, which is what \texttt{\LaTeX}X provides as the default list structure. Otherwise, the user is left to use \texttt{\reglist}. The redefinition should look very similar to that for \reglist. In all cases, \regdesc starts by attempting to place a small amount of vertical space between it and the presumed register diagram immediately above it.
This command allows a register diagram to be broken into multiple lines

\regnewline
\begin{list}{*}
\item This environment declares the floating environment in which a register diagram and, optionally, its field descriptions can be typeset. It takes as arguments the float type (h, t, p, H); the register name; and the register offset/address.
\end{list}
\begin{Regfloat}[#1]\setlength{\leftskip}{0pt}\setlength{\oldregdescsep}{\regdescsep}\setlength{\regdescsep}{0.5\baselineskip}\setlength{\partopsep}{0pt}\setlength{\topsep}{0pt}\setboolean{RegisterContext}{true}\ifthenelse{\equal{#3}{}}{\caption[#2]{\textsc{#2}}}{\caption[#2]{\textsc{#2} ({#3})}}\centering\restore\end{Regfloat}
\begin{Regfloat}[#1]\setlength{\leftskip}{0pt}\setlength{\oldregdescsep}{\regdescsep}\setlength{\regdescsep}{0.5\baselineskip}\setlength{\partopsep}{0pt}\setlength{\topsep}{0pt}\setboolean{RegisterContext}{true}\ifthenelse{\equal{#3}{}}{\caption[#2]{\textsc{#2}}}{\caption[#2]{\textsc{#2} ({#3})}}\centering\restore\end{Regfloat}
\begin{Regfloat}[#1]\setlength{\leftskip}{0pt}\setlength{\oldregdescsep}{\regdescsep}\setlength{\regdescsep}{0.5\baselineskip}\setlength{\partopsep}{0pt}\setlength{\topsep}{0pt}\setboolean{RegisterContext}{true}\ifthenelse{\equal{#3}{}}{\caption[#2]{\textsc{#2}}}{\caption[#2]{\textsc{#2} ({#3})}}\centering\restore\end{Regfloat}
\begin{Regfloat}[#1]\setlength{\leftskip}{0pt}\setlength{\oldregdescsep}{\regdescsep}\setlength{\regdescsep}{0.5\baselineskip}\setlength{\partopsep}{0pt}\setlength{\topsep}{0pt}\setboolean{RegisterContext}{true}\ifthenelse{\equal{#3}{}}{\caption[#2]{\textsc{#2}}}{\caption[#2]{\textsc{#2} ({#3})}}\centering\restore\end{Regfloat}

\regnewline

This register* environment provides for an unnumbered or “captionless” register; registers in such an environment are not added to the list of registers.
The next definitions provide a method of spreading out an argument, i.e., placing \hfill's between each character. They can be used to space the reset value of a register field appropriately. Previous versions of these macros used \TeX's conditionals incorrectly.

If you are using the underscore package, you should repeat the definition of \regUnderScore, after loading underscore in order to observe the changes made by that package. The spreading macros below strive to strip out underscores.

\begin{verbatim}
\def\regUnderScore{_}%
\def\regFiller#1{\def\regInner{#1}%
\ifx\regInner\regUnderScore%
\else%
\ifnum\count0>0%
\hfill#1%
\else#1\fi%
\fi%
\advance\count0 by 1%
}
\def\regSpread#1{%
\def\regSpreadaux#1\empty{\def\aux{#1}%
\ifx\aux\empty%
\else%
\def\aux{#2}%
\regFiller{#1}%
\ifx\aux\empty%
\else%
\regSpreadaux#2\empty%
\fi\fi}
\regSpreadaux#1\empty}
\end{verbatim}
6.4.1 Register fields

Define some internal utility macros which get called repeatedly. These macros figure out some of the dimensions of the current font (is there a better way to do this?), construct and rotate label boxes, and typeset bit positions.

```
\newcommand{\setRegLengths}{%
  % Compute basic width of a single bit
  \settowidth{\regFieldLen}{\regLabelSize \regResetName}%
  \setlength{\regFieldLen}{\regWidth - \regFieldLen}%
  \setlength{\regFieldLen}{\regFieldLen / \regBitWidth}%
  % Figure out height and depth of reset field in current font
  % Is there a more 'official' method to do this?
  \settodepth{\regResetDepth}{\regResetSize ()jgpq}%
  \settoheight{\regResetHeight}{\regResetSize ()ABCjkl}%
  \addtolength{\regResetHeight}{\regResetDepth}%
  % Compute how far to drop the reset fields down. The value at
  % the end is effectively the separation between the bit position
  % box and the reset value box.
  \setlength{\regResetDrop}{\regResetHeight + 2\fboxsep - 2\fboxrule + 3pt}%
  % New lengths to support colorbox use, when fboxsep gets set to 0
  \setlength{\regRsvdDrop}{\regResetDrop + \fboxsep}%
  \setlength{\regRsvdHeight}{\regResetHeight + 2\fboxsep}%
  \setlength{\regFboxSep}{\fboxsep}%
}%
```

These macros assembly, rotate, and typeset the register field name. It is the use of \rotatebox below which makes register require PostScript processing.

```
\newcommand{\regMakeFieldName}[1]{%
  % Create box to hold label
  \savebox{\Label}{\regLabelSize \regLabelFamily #1}%
}%
\newcommand{\regRotateFieldName}{%
  \savebox{\RotatedLabel}{\rotatebox[origin=lB]{45}{\usebox{\Label}}}%
  \makebox[0pt][l]{\raisebox{\regResetHeight + \fboxsep + \depth + 1pt}{\hspace{\regLabelAdjust}\usebox{\RotatedLabel}}}%
}%
```

The \typesetRegBits macro constructs the frame for a particular register field and sets the starting and ending bit positions within that frame.

```
\newcommand{\typesetRegBits}[1]{%
  \ifthenelse{#1 > 1}{%  \framebox[\regFieldLen][c]{\regBitSize \rule[-1\regResetDepth]{\regResetHeight}\regBitFamily \arabic{upperbit} \hfill \arabic{lowerbit}}}%
  \framebox[\regFieldLen][c]{\regBitSize \rule[-1\regResetDepth]{\regResetHeight}\regBitFamily \arabic{lowerbit}}}%
```

This macro constructs a frame, below the bit position frame, displaying the reset (or some other) value for a register field.
\newcommand\{\typesetRegReset\}[1]{%
% Typeset reset value in a framebox
\makebox[0pt][l]{\raisebox{-1\regResetDrop}{\framebox[\regFieldLen][c]{%
% Place an invisible rule to control the box
% surrounding the reset field
\regResetSize \rule[-1\regResetDepth]{0pt}{\regResetHeight}\regSpread{#1}}}}}%
\regfieldNoColor

The macros below are the user interface to the register drawing routines. The first of these, \regfieldNoColor takes four arguments: the field name, field length (in bits), the starting bit number, and the field’s reset value. This is the version of the macro that does not make any use of \colorbox.

\newcommand\{\regfieldNoColor\}[4]{%
% Compute overall field length
\setRegLengths%
\setlength{\regFieldLen}{#2\regFieldLen + \fboxrule}%
% Figure out bit positions
\setcounter{lowerbit}{#3}%
\setcounter{upperbit}{#3 + #2 - 1}%
\regMakeFieldName{#1}%
% Figure out how far over to place label, accounting for height
\setlength{\regLabelAdjust}{0.5\regFieldLen - 0.707107\ht\Label}%
% Now, rotate and type the label
\regRotateFieldName%
% Typeset bit positions in a framebox
\typesetRegReset{#4}%
% Typeset bit positions
\typesetRegBits{#2}=%
\hspace{-1\fboxrule}}%
\regfieldbNoColor

The \regfieldbNoColor macro can be used to construct a register diagram without reset values. It’s parameters are thus the same as for \regfieldNoColor with the omission of reset value.

\newcommand\{\regfieldbNoColor\}[3]{%
% Compute overall field length
\setRegLengths%
\setlength{\regFieldLen}{#2\regFieldLen + \fboxrule}%
% Figure out bit positions
\setcounter{lowerbit}{#3}%
\setcounter{upperbit}{#3 + #2 - 1}%
% Create box to hold label
\regMakeFieldName{#1}%
% Figure out how far over to place label, accounting for height
\setlength{\regLabelAdjust}{0.5\regFieldLen - 0.707107\ht\Label}%
% Now, rotate and typeset the label
\regRotateFieldName%
% Typeset bit positions
\typesetRegBits{#2}%;
Now, we define versions of the same macros that make use of \colorbox, taking an additional argument that specifies the fill color to use.

\newcommand{\typesetRegColorBits}[2]{%
\ifthenelse{\boolean{RegisterColors}}{%
\colorbox{#1}{%
\setlength{\fboxsep}{0pt}%
\framebox[\regFieldLen][c]{%
\regBitSize \rule[-1\regResetDepth - \regFboxSep]{0pt}%
\regResetHeight + 2\regFboxSep}%
\regBitFamily \hspace{\regFboxSep}%
\arabic{upperbit} \hfill \arabic{lowerbit}%
\hspace{\regFboxSep}}}%
\setlength{\fboxsep}{\regFboxSep}%
}{%
\colorbox{#1}{%
\framebox[\regFieldLen][c]{%
\regBitSize \rule[-1\regResetDepth - \regFboxSep]{0pt}%
\regResetHeight + 2\regFboxSep}%
\arabic{lowerbit}}}%
\setlength{\fboxsep}{0pt}%
\colorbox{#1}{%
\framebox[\regFieldLen][c]{%
\regBitSize \rule[-1\regResetDepth - \regFboxSep]{0pt}%
\regResetHeight + 2\regFboxSep}%
\regBitFamily \arabic{lowerbit}}}%
\setlength{\fboxsep}{0pt}%
\colorbox{#1}{%
\framebox[\regFieldLen][c]{%
\regBitSize \rule[-1\regResetDepth - \regFboxSep]{0pt}%
\regResetHeight + 2\regFboxSep}%
\arabic{lowerbit}}}%
\setlength{\fboxsep}{0pt}%}
\newcommand{\typesetRegColorReset}[2]{% \makebox[0pt][l]{\raisebox{-1\regRsvdDrop}{% \colorbox{#1}{% \framebox[\regFieldLen][c]{% \regResetSize \rule[-1\regResetDepth]{0pt}{\regRsvdHeight}% \raisebox{\regFboxSep}{\makebox[\regFieldLen]{\hspace{\regFboxSep}\regSpread{#2}\hspace{\regFboxSep}}}}}}%}
\newcommand{\regfieldColor}[5]{% \setRegLengths% \setlength{\regFieldLen}{#3\regFieldLen + \fboxrule}% \% Figure out bit positions% \setcounter{lowerbit}{#4}% \setcounter{upperbit}{#4 + #3 - 1}% \% Figure out how far over to place label, accounting for height% \setlength{\regLabelAdjust}{0.5\regFieldLen - 0.707107\ht\Label}% \% Now, rotate and type the label% \regRotateFieldName% \typesetRegColorReset{#1}{#5}% \% Typeset bit positions in a framebox% \typesetRegColorBits{#1}{#3}%
% Compute overall field length
\setRegLengths%
\setlength{\regFieldLen}{#3\regFieldLen + \fboxrule}%
% Figure out bit positions
\setcounter{lowerbit}{#4}%
\setcounter{upperbit}{#4 + #3 - 1}%
% Create box to hold label
\regMakeFieldName{#2}%
% Figure out how far over to place label, accounting for height
\setlength{\regLabelAdjust}{0.5\regFieldLen - 0.707107\ht\Label}%
% Now, rotate and typeset the label
\regRotateFieldName%
% Typeset bit positions
\typesetRegColorBits{#1}{#3}%
\hspace{-1\fboxrule}%
}
}

\regfieldb

Next, provide definitions for the \regfield and \regfieldb macros that are intended for direct use within the register diagrams. These commands just check for the presence of a non-empty optional argument and, based upon that, decide whether to invoke the Color or NoColor variants of the typesetting macros.

\ifthenelse{\boolean{RegisterColors}}{
\newcommand{\regfield}[5][]{%
 \ifthenelse{\equal{#1}{}}{%
 \regfieldNoColor{#2}{#3}{#4}{#5}}%
 {\regfieldColor{#1}{#2}{#3}{#4}{#5}}}
\newcommand{\regfieldb}[4][]{%
 \ifthenelse{\equal{#1}{}}{%
 \regfieldbNoColor{#2}{#3}{#4}}%
 {\regfieldbColor{#1}{#2}{#3}{#4}}}
}{
\newcommand{\regfield}[5][]{%
 \regfieldNoColor{#2}{#3}{#4}{#5}}%
\newcommand{\regfieldb}[4][]{%
 \regfieldbNoColor{#2}{#3}{#4}}%
}

\regbits

The \regbits macro typesets a register field without showing bit positions. As such, it only takes three parameters: field name, field bit length, and field value.

\newcommand{\regbits}[3][]{%
 % Compute overall field length
 \setRegLengths%
 \setlength{\regFieldLen}{#2\regFieldLen + \fboxrule}%
 % Figure out bit positions
}
Finally, define some additional utility macros. An invisible box with the same width as a specified number of bits is typeset by \texttt{\regspace}. It takes as its sole parameter the desired bitwidth. The \texttt{\reglabel} macro typesets the label for the reset field in register diagrams. Finally, \texttt{\reglabelb} performs the same function, but without any drop.

\begin{verbatim}
\newcommand{\regspace}[1]{% \setRegLengths% \setlength{\regFieldLen}{#1\regFieldLen + \fboxrule} \makebox[\regFieldLen]{}}
\newcommand{\reglabel}[1]{% \settowidth{\regFieldLen}{\regLabelSize \regResetName}\setlength{\regResetDrop}{\regResetDrop + 0.5\fboxsep} \,$\,$\raisebox{-0.5\fboxsep}{\makebox[\regFieldLen][l]{\regLabelSize\regBitFamily #1}}
\newcommand{\reglabelb}[1]{% \settowidth{\regFieldLen}{\regLabelSize \regResetName}\,$\,$\raisebox{-1\fboxrule}{\makebox[\regFieldLen][l]{\regLabelSize\regBitFamily #1}}
\end{verbatim}

6.4.2 Hyperref Interface

This code helps with the hyperlinks to register floats when producing linked PDF.

\begin{verbatim}
\ifthenelse{\boolean{RegisterHyperref}}{% \define a counter for the hyperref package. Otherwise,
\% the hyperlinks to registers don’t work correctly
\namedef{theHRegfloat}{\theRegfloat}
\% Define a bookmark level for Regfloats (for hyperref package)
\def{toclevel\Regfloat}{0}
\end{verbatim}
6.4.3 List of Registers

The code below redefines what the `float` package specifies in order to provide a hook for changing the format of the ToC line for registers.

```latex
\newcommand{\listofregisters}{\if@undefined{ext@Regfloat}{\textbf{Error: Regfloat}}{\if@undefined{chapter}{\textbf{Chapter}}{\section}}{List of Registers\make@{List of Registers}}{\addcontentsline{toc}{chapter}{List of Registers}}}
\newcommand{\l@Regfloat}{\dottedtocline{1}{1.5em}{2.3em}}
```

The `\chapter` command, if present, is also redefined in order to get identical chapter-related spacing in the list of registers as appears in the LoF and LoT. Kjetil Oftedal provided a fix wherein we test that `\mainmatter` is defined prior to using it.

```latex
\newcommand{\mainmatter}{\newif{\mainmatter}\mainmattertrue}
\newcommand{\chapter}{\if@mainmatter\refstepcounter{chapter}\addcontentsline{toc}{chapter}{\numberline{\thechapter}\textbf{#1}}\make@{\textbf{#1}}\addtocontents{lof}{\addvspace{10\p@}}\addtocontents{lot}{\addvspace{10\p@}}\addtocontents{rdf}{\addvspace{10\p@}}\if@twocolumn\@topnewpage\@makechapterhead{\textbf{#1}}\else\@makechapterhead{\textbf{#1}}\@afterheading\fi}{\fi}
```

6.5 TR flag macros

Define a mechanism for including TR flags in register descriptions, as well as possibly in the main body of the text. One cannot just use \marginpar’s within a register description, since they are typically part of a register float. \LaTeX’s \marginpar command is also considered a float, so they cannot be nested.

So, we resort to using some lower level \LaTeX. This certainly isn’t the most elegant way to get the flags, but I think it will work for the majority of cases.

The \TR{} command is intended to be placed at the start of a register field description, so that the alignment is obvious on the page. To also get decent alignment in main body text, it is necessary to have a second definition. So, we’ll see these commands get redefined inside regdesc, below.

The TR flags also decide which page they are on by placing labels and testing the resulting pagename. This enables the flags to be placed in the outer margin in two-sided documents.

\TRfamily \TRwidth

The font family used for the TR flags can be controlled via \TRfamily. The width available for TR flags is controlled by \TRwidth, which by default is set to \marginparwidth. Setting the width may be important if you are using the TRboxed package option.

\% Define a pageref which will work with \isodd
\newcommand\@GetTRSecondParam{}\long\def\@GetTRSecondParam#1#2#3\@nil{#2}\newcommand*{\GetTRPageRef}[1]{\expandafter\expandafter\expandafter\@GetTRSecondParam\csname r@#1\endcsname0% dummy, if the reference is undefined\@nil410}\newcommand{\TRfamily}{\sffamily}411\newcounter{T@peReleaseTag}412\newlength{\TRwidth}413\setlength{\TRwidth}{\marginparwidth}414\newlength{T@peReleaseDepth}415% Internal command to form the actual TR margin note.\newcommand{\TRwriteout}[1]{\makebox[\TRwidth][c]{\raisebox{T@peReleaseDepth}{\ifthenelse{\boolean{RegisterTRBoxed}}{\fbox{\TRfamily #1}}{\TRfamily #1}}}}417% Internal command to typeset a TR flag in the right margin\newcommand{\TRrightlabel}[1]{%\hspace{\TRwidth}\makebox[\TRwidth][c]{\raisebox{T@peReleaseDepth}{\ifthenelse{\boolean{RegisterTRBoxed}}{\fbox{\TRfamily #1}}{\TRfamily #1}}}}419% Place a strut in order to set line depth
Finally, the user-level command is simply \TR.

\TR

Enjoy! Happy documenting.