Labelled diagrams in \textsc{metafont}
Alan Jeffrey

1 Diagrams in \textsc{metafont}

In \textit{TUGboat} 11(4), Alan Hoenig described a method of producing diagrams in \textsc{metafont} with labels provided by \TeX. His method relied on passing information around via font dimensions. This is a standard method of passing information from \textsc{metafont} to \TeX, but it has some drawbacks:

- There are only a limited number of font dimensions available, and each label uses up two of them.
- As \textsc{metafont} can only communicate with \TeX via font dimensions, each label has to be assigned a font dimension, and it is difficult for the correspondence between font dimensions and labels to be kept automatically.
- Since \TeX is providing the labels, and \textsc{metafont} is providing the diagrams, the diagrams have to be kept in a different file from the labels.
- There is no communication between \TeX and \textsc{metafont}, so \textsc{metafont} cannot change the diagram depending on the size and shape of the labels. This is rather inconvenient for diagrams such as

\begin{equation}
\begin{array}{c}
g \circ h
\end{array}
\end{equation}

where the shape of the ovals depends on the size of the contents.

Fired with enthusiasm by Alan’s talk at the European \TeX Users Group meeting, I stole the best of his ideas, and slightly modified them to produce a simple \textsc{metafont}–\TeX interface. This allows \TeX code to be embedded within a \textsc{metafont} program, for example:

```\textsc{metafont}
begindiagram(2,30pt#,7pt#,2pt#);
hboxes(0);
pickup pencircle scaled 0.4pt;
.5[hboxl0,hboxr0] = (.5w,0);
draw hboxbl0..hboxtl0
    ---hboxtr0..hboxbr0
    ---cycle;
setbox0 "g \circ h";
enddiagram;
```

begindiagram(2,30pt#,7pt#,2pt#) starts off diagram 2, which is 30pt wide, 7pt tall and 2pt deep.

hboxes(0) says that the only label we’ll be using is number 0. This has a similar syntax to labels, so you can say hboxes(1,2,7) or hboxes(3 upto 9).

hboxl0 is the left point of label number 0, at the baseline. Similarly, hboxr10 is the bottom left, hboxr0 is top right, and so on. In this example, these points are

```
hboxl0 \hboxr0
hboxl0 \hboxr0
```

You can also use the numeric variables hboxw0, hboxht0 and hboxdp0 which are the width, height and depth of label 0, and hboxw#, hboxht# and hboxdp# which are their sharp equivalents.

setbox0 "$g \circ h$" sets label number 0 to be $g \circ h$.

enddiagram finishes it all off.

The rest of the diagram is standard \textsc{metafont}. Within a \TeX document you can use

\begin{verbatim}
\diagramfile{dmfexmpl} to load in the diagrams kept in dmfexmpl.mf,
\end{verbatim}

\begin{verbatim}
\diagramf{2} to get the second diagram, and
\end{verbatim}

\begin{verbatim}
\everylabel which is a token register added to every label, in the same fashion as \everymath.
\end{verbatim}

It should be set before saying \diagramfile.

These commands behave well inside groups, so if you say

\begin{verbatim}
\diagramfile{foo}
{\diagramfile{baz}\diagramf{1}}
\diagramf{2}
\end{verbatim}

you get the first diagram from baz and the second diagram from foo.

2 How it all works

In the \textsc{diagram} package, \TeX and \textsc{metafont} communicate by auxiliary files, in a similar fashion to the MG \TeX-PostScript interface (‘Problems on the \TeX/PostScript/graphics interface’, \textit{TUGboat} 11(3)).
When you run METAFONT on dmfexmpl.mf it reads in dmfexmpl.dim, which specifies the dimensions of all the boxes. In our example, part of dmfexmpl.dim is

\begin{verbatim}
wd#[2] [0] := 20.3344pt;
ht#[2] [0] := 6.94444pt;
dp#[2] [0] := 1.94444pt;
\end{verbatim}

So, in diagram 2, label 0 has width 20.3344pt, height 6.94444pt and depth 1.94444pt. From this, METAFONT calculates where to put each label, and outputs a .dia file, containing TeX code. For example dmfexmpl.dia contains\footnote{Actually, each line ends with \texttt{% diagramf}.}:

\begin{verbatim}
\newdiagram{2}
\diagramlabel{0}{4.88908pt}{0pt} $g \circ h$
\enddiagramlabel
\diagramchar{2}
\endnewdiagram
\end{verbatim}

This tells TeX that diagram number 2 contains label 0 at coordinates (4.88908pt,0pt) consisting of $g \circ h$. The diagram is character number 2 in the dmfexmpl font.

Similarly, when TeX encounters the instruction \texttt{\diagramfile{dmfexmpl}} it loads in dmfexmpl.dia and produces dmfexmpl.dim. And so we can have our METAFONT cake and eat it in TeX.

Well, almost. Unfortunately for all these grand ideas, METAFONT has no file-handling capabilities at all! The only files METAFONT generates are the .tfm, .gf and .log files.

This is rather annoying, but fortunately we can steal an idea from Section 7 of the Dirty Tricks appendix in The METAFONT book. There, Knuth uses the .log file as a means of communicating between METAFONT jobs. Similarly, we use the .log file as a way of sending messages to TeX. Our \texttt{texoutput} macro is defined

\begin{verbatim}
def texoutput text t =
 for s = t:
 message s & "% diagramf";
 endfor
 message ""
enddef;
\end{verbatim}

So \texttt{texoutput "Fred", "Ethel"} produces the output

Fred\% diagramf
Ethel\% diagramf

You can then use your favourite file-handling utility to filter the .log file, keeping only the lines containing \texttt{\% diagramf}. On my UNIX set-up, for example, I have an alias \texttt{diagramf foo} which expands out to

\begin{verbatim}
touch foo.dim
mf foo
grep "% diagramf" foo.log > foo.dia
echo Labels written on foo.dia.
\end{verbatim}

The crucial line in this is the \texttt{grep}, which takes all the lines from foo.log containing \texttt{\% diagramf} and puts them in foo.dia.

And so we’ve achieved labelled diagrams in METAFONT. The \texttt{diagramf} package is free software, and is available from the Aston archive.

3 Acknowledgements

The inspiration, and many of the original ideas, for this article came from Alan Hoenig’s talk on the same subject at Cork. I’d also like to thank Jeremy Gibbons and Damian Cugley for comments, advice and allowing me to bounce ideas off them.

\begin{verbatim}
\diamond Alan Jeffrey
School of Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH
UK
alanje@cogs.sussex.ac.uk
\end{verbatim}

© 1990 Alan Jeffrey