%%^^A%% um-code-primes.dtx -- part of UNICODE-MATH %%^^A%% The definitions needed for the input of primes. % \section{Primes} % % \begin{macrocode} %<*package> % \end{macrocode} % % We need a new prime' algorithm. Unicode math has four pre-drawn prime glyphs. % \begin{quote}\obeylines % \unichar{2032} {prime} (\cs{prime}): $x\prime$ % \unichar{2033} {double prime} (\cs{dprime}): $x\dprime$ % \unichar{2034} {triple prime} (\cs{trprime}): $x\trprime$ % \unichar{2057} {quadruple prime} (\cs{qprime}): $x\qprime$ % \end{quote} % As you can see, they're all drawn at the correct height without being superscripted. % However, in a correctly behaving OpenType font, % we also see different behaviour after the \texttt{ssty} feature is applied: % \begin{quote} % \font\1="[XITSMath-Regular.otf]:script=math,+ssty=0"\1 % \char"1D465\char"2032\quad % \char"1D465\char"2033\quad % \char"1D465\char"2034\quad % \char"1D465\char"2057 % \end{quote} % The glyphs are now full size' so that when placed inside a superscript, % their shape will match the originally sized ones. Many thanks to Ross Mills % of Tiro Typeworks for originally pointing out this behaviour. % % In regular \LaTeX, primes can be entered with the straight quote character % |'|, and multiple straight quotes chain together to produce multiple % primes. Better results can be achieved in \pkg{unicode-math} by chaining % multiple single primes into a pre-drawn multi-prime glyph; consider % $x\prime{}\prime{}\prime$ vs.\ $x\trprime$. % % For Unicode maths, we wish to conserve this behaviour and augment it with % the possibility of adding any combination of Unicode prime or any of the % $n$-prime characters. E.g., the user might copy-paste a double prime from % another source and then later type another single prime after it; the output % should be the triple prime. % % Our algorithm is: % \begin{itemize}[nolistsep] % \item Prime encountered; pcount=1. % \item Scan ahead; if prime: pcount:=pcount+1; repeat. % \item If not prime, stop scanning. % \item If pcount=1, \cs{prime}, end. % \item If pcount=2, check \cs{dprime}; if it exists, use it, end; if not, goto last step. % \item Ditto pcount=3 \& \cs{trprime}. % \item Ditto pcount=4 \& \cs{qprime}. % \item If pcount>4 or the glyph doesn't exist, insert pcount \cs{prime}s with \cs{primekern} between each. % \end{itemize} % % This is a wrapper to insert a superscript; if there is a subsequent % trailing superscript, then it is included within the insertion. % \begin{macrocode} \cs_new:Nn \@@_arg_i_before_egroup:n {#1\egroup} \cs_new:Nn \@@_superscript:n { ^\bgroup #1 \peek_meaning_remove:NTF ^ \@@_arg_i_before_egroup:n \egroup } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_nprimes:Nn { \@@_superscript:n { #1 \prg_replicate:nn {#2-1} { \mskip \g_@@_primekern_muskip #1 } } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_nprimes_select:nn { \int_case:nnF {#2} { {1} { \@@_superscript:n {#1} } {2} { \@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2033} { \@@_superscript:n {\@@_prime_double_mchar} } { \@@_nprimes:Nn #1 {#2} } } {3} { \@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2034} { \@@_superscript:n {\@@_prime_triple_mchar} } { \@@_nprimes:Nn #1 {#2} } } {4} { \@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2057} { \@@_superscript:n {\@@_prime_quad_mchar} } { \@@_nprimes:Nn #1 {#2} } } } { \@@_nprimes:Nn #1 {#2} } } % \end{macrocode} % % \begin{macrocode} \cs_new:Nn \@@_nbackprimes_select:nn { \int_case:nnF {#2} { {1} { \@@_superscript:n {#1} } {2} { \@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2036} { \@@_superscript:n {\@@_backprime_double_mchar} } { \@@_nprimes:Nn #1 {#2} } } {3} { \@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2037} { \@@_superscript:n {\@@_backprime_triple_mchar} } { \@@_nprimes:Nn #1 {#2} } } } { \@@_nprimes:Nn #1 {#2} } } % \end{macrocode} % % Scanning is annoying because I'm too lazy to do it for the general case. % % \begin{macrocode} \cs_new:Npn \@@_scan_prime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_zero:N \l_@@_primecount_int \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_dprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_set:Nn \l_@@_primecount_int {1} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_trprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_set:Nn \l_@@_primecount_int {2} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_qprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_set:Nn \l_@@_primecount_int {3} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_sup_prime: { \int_zero:N \l_@@_primecount_int \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_sup_dprime: { \int_set:Nn \l_@@_primecount_int {1} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_sup_trprime: { \int_set:Nn \l_@@_primecount_int {2} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Npn \@@_scan_sup_qprime: { \int_set:Nn \l_@@_primecount_int {3} \@@_scanprime_collect:N \@@_prime_single_mchar } \cs_new:Nn \@@_scanprime_collect:N { \int_incr:N \l_@@_primecount_int \peek_meaning_remove:NTF ' { \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_prime: { \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2032 { \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_dprime: { \int_incr:N \l_@@_primecount_int \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2033 { \int_incr:N \l_@@_primecount_int \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_trprime: { \int_add:Nn \l_@@_primecount_int {2} \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2034 { \int_add:Nn \l_@@_primecount_int {2} \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_qprime: { \int_add:Nn \l_@@_primecount_int {3} \@@_scanprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2057 { \int_add:Nn \l_@@_primecount_int {3} \@@_scanprime_collect:N #1 } { \@@_nprimes_select:nn {#1} {\l_@@_primecount_int} } } } } } } } } } } % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \@@_scan_backprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_zero:N \l_@@_primecount_int \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Npn \@@_scan_backdprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_set:Nn \l_@@_primecount_int {1} \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Npn \@@_scan_backtrprime: { \cs_set_eq:NN \@@_superscript:n \use:n \int_set:Nn \l_@@_primecount_int {2} \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Npn \@@_scan_sup_backprime: { \int_zero:N \l_@@_primecount_int \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Npn \@@_scan_sup_backdprime: { \int_set:Nn \l_@@_primecount_int {1} \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Npn \@@_scan_sup_backtrprime: { \int_set:Nn \l_@@_primecount_int {2} \@@_scanbackprime_collect:N \@@_backprime_single_mchar } \cs_new:Nn \@@_scanbackprime_collect:N { \int_incr:N \l_@@_primecount_int \peek_meaning_remove:NTF  { \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_backprime: { \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2035 { \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_backdprime: { \int_incr:N \l_@@_primecount_int \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2036 { \int_incr:N \l_@@_primecount_int \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF \@@_scan_backtrprime: { \int_add:Nn \l_@@_primecount_int {2} \@@_scanbackprime_collect:N #1 } { \peek_meaning_remove:NTF ^^^^2037 { \int_add:Nn \l_@@_primecount_int {2} \@@_scanbackprime_collect:N #1 } { \@@_nbackprimes_select:nn {#1} {\l_@@_primecount_int} } } } } } } } } % \end{macrocode} % % \begin{macrocode} \AtBeginDocument { \@@_define_prime_commands: \@@_define_prime_chars: } \cs_new:Nn \@@_define_prime_commands: { \cs_set_eq:NN \prime \@@_prime_single_mchar \cs_set_eq:NN \dprime \@@_prime_double_mchar \cs_set_eq:NN \trprime \@@_prime_triple_mchar \cs_set_eq:NN \qprime \@@_prime_quad_mchar \cs_set_eq:NN \backprime \@@_backprime_single_mchar \cs_set_eq:NN \backdprime \@@_backprime_double_mchar \cs_set_eq:NN \backtrprime \@@_backprime_triple_mchar } % \end{macrocode} % % \begin{macrocode} \group_begin: \char_set_catcode_active:N \' \char_set_catcode_active:N \ \char_set_catcode_active:n {"2032} \char_set_catcode_active:n {"2033} \char_set_catcode_active:n {"2034} \char_set_catcode_active:n {"2057} \char_set_catcode_active:n {"2035} \char_set_catcode_active:n {"2036} \char_set_catcode_active:n {"2037} \cs_gset:Nn \@@_define_prime_chars: { \cs_set_eq:NN ' \@@_scan_sup_prime: \cs_set_eq:NN ^^^^2032 \@@_scan_sup_prime: \cs_set_eq:NN ^^^^2033 \@@_scan_sup_dprime: \cs_set_eq:NN ^^^^2034 \@@_scan_sup_trprime: \cs_set_eq:NN ^^^^2057 \@@_scan_sup_qprime: \cs_set_eq:NN ` \@@_scan_sup_backprime: \cs_set_eq:NN ^^^^2035 \@@_scan_sup_backprime: \cs_set_eq:NN ^^^^2036 \@@_scan_sup_backdprime: \cs_set_eq:NN ^^^^2037 \@@_scan_sup_backtrprime: } \group_end: % \end{macrocode} % % % \begin{macrocode} % % \end{macrocode} \endinput % /© % % ------------------------------------------------ % The UNICODE-MATH package % ------------------------------------------------ % This package is free software and may be redistributed and/or modified under % the conditions of the LaTeX Project Public License, version 1.3c or higher % (your choice): . % ------------------------------------------------ % Copyright 2006-2019 Will Robertson, LPPL "maintainer" % Copyright 2010-2017 Philipp Stephani % Copyright 2011-2017 Joseph Wright % Copyright 2012-2015 Khaled Hosny % ------------------------------------------------ % % ©/