if not modules then modules = { } end modules ['l-math'] = { version = 1.001, comment = "companion to luat-lib.mkiv", author = "Hans Hagen, PRAGMA-ADE, Hasselt NL", copyright = "PRAGMA ADE / ConTeXt Development Team", license = "see context related readme files" } if not math.ceiling then math.ceiling = math.ceil end if not math.round then local floor = math.floor function math.round(x) return floor(x + 0.5) end end if not math.div then local floor = math.floor function math.div(n,m) return floor(n/m) end end if not math.mod then function math.mod(n,m) return n % m end end if not math.sind then local sin, cos, tan = math.sin, math.cos, math.tan local pipi = 2*math.pi/360 function math.sind(d) return sin(d*pipi) end function math.cosd(d) return cos(d*pipi) end function math.tand(d) return tan(d*pipi) end end if not math.odd then function math.odd (n) return n % 2 ~= 0 end function math.even(n) return n % 2 == 0 end end if not math.cosh then local exp = math.exp function math.cosh(x) local xx = exp(x) return (xx+1/xx)/2 end function math.sinh(x) local xx = exp(x) return (xx-1/xx)/2 end function math.tanh(x) local xx = exp(x) return (xx-1/xx)/(xx+1/xx) end end if not math.pow then function math.pow(x,y) return x^y end end if not math.atan2 then math.atan2 = math.atan end if not math.ldexp then function math.ldexp(x,e) return x * 2.0^e end end -- if not math.frexp then -- -- -- not a oneliner so use a math library instead -- -- function math.frexp(x,e) -- -- returns m and e such that x = m2e, e is an integer and the absolute -- -- value of m is in the range [0.5, 1) (or zero when x is zero) -- end -- -- end if not math.log10 then local log = math.log function math.log10(x) return log(x,10) end end if not math.type then function math.type() return "float" end end if not math.tointeger then math.mininteger = -0x4FFFFFFFFFFF math.maxinteger = 0x4FFFFFFFFFFF local floor = math.floor function math.tointeger(n) local f = floor(n) return f == n and f or nil end end if not math.ult then local floor = math.floor function math.tointeger(m,n) -- not ok but i'm not motivated to look into it now return floor(m) < floor(n) -- unsigned comparison needed end end